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Abstract
Using high precision Monte Carlo simulations and a mean-field theory, we
explore coarsening phenomena in a simple driven diffusive system. The model
is reminiscent of vehicular traffic on a two-lane ring road. At sufficiently high
density, the system develops jams (clusters) which coarsen with time. A key
parameter is the passing probability, γ . For small values of γ , the growing
clusters display dynamic scaling with a growth exponent of 2/3. For larger
values of γ , the growth exponent must be adjusted suggesting the ordered
(jammed) state is not a genuine phase but rather a finite-size effect.

PACS numbers: 05.70.Ln, 68.43.Jk, 64.60.Cn

1. Introduction

Coarsening phenomena and pattern formation are fascinating subjects, drawing much attention
especially in the context of first-order transitions [1–3]. Though these phenomena are
inherently dynamic in nature, there are intimate links to the statics associated with thermal
equilibrium. To be specific, the underlying rules of evolution of this class of systems obey
detailed balance (microscopic reversibility); otherwise, these systems would never reach their
equilibrium states. More recently, considerable attention has been directed at a different class
of many-body systems, namely, those which settle into non-equilibrium steady states. Unlike
their equilibrium counterparts, these steady states experience net fluxes (of, say, energy or
particles) through the system. As a result, their stationary distributions lie in general entirely
outside the Boltzmann–Gibbs paradigm and most are completely unknown. Nevertheless,
these systems are ubiquitous in nature (including, in particular, all biological systems) and
deserve our attention. The main distinguishing feature of non-equilibrium steady states is that
they are coupled to more than one energy (or particle) reservoir, so that the underlying dynamics
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violates detailed balance. Not surprisingly, such systems display much richer behaviour than
those in thermal equilibrium [4, 5]. Here, we ask a natural question: if such a system undergoes
a first-order-like transition, will it also display very different coarsening phenomena? In other
words, can we expect novel properties in systems evolving under a detailed balance violating
dynamics?

Posed in this way, our question is extremely broad and progress towards an answer
will not be easy. One approach to this goal is to study idealized, simple model
systems. The hope is that, by exploring their behaviour, we will gain important insight
towards the understanding of more complex real systems. In addition, we may discover
universality classes which encompass both simple models and real systems. The Ising
model played precisely such a role in the understanding of thermodynamic singularities
in a wide class of equilibrium systems. In the same spirit, we explore coarsening
phenomena in a simple lattice gas model, driven into steady states far from thermal
equilibrium.

Our model is a member of a class known as driven diffusive systems. Introduced
by Katz, Lebowitz and Spohn [6] as a seemingly trivial modification of the Ising lattice
gas, the prototype displayed many surprising and counterintuitive phenomena. Since then,
variations and extensions of this simple model have been explored, and rich and complex
behaviour continues to emerge [4, 5]. One recent example is the drastic difference between
a strictly one-dimensional system (L × 1, also referred to as ‘one-lane’) and a quasi-one
dimensional (L × 2, ‘two-lane’) lattice gas involving two species of particles [7]. Driven
in opposite directions on lattices with periodic boundary conditions (‘ring roads’), two
particles encountering one another may exchange positions with a small exchange rate γ .
The steady state of the one-lane model is known analytically [8] to remain homogeneous
at all positive γ and ρ̄, the average particle density or filling fraction. Meanwhile, Monte
Carlo studies of the two-lane system showed a transition to an inhomogeneous state, with
a single macroscopic cluster [7] (a jammed state). Subsequently, simulations and a mean-
field theory for a very similar model also indicated such a kind of ‘phase transition’ [9, 10].
Remarkably, an exact solution for this model was established later [11, 12], showing that
the jammed state is a finite-size effect: two-particle correlations are controlled by a finite—
but gargantuan (e.g., 1070!)—length scale. Though there are reasons to believe that our
model also displays this type of finite-size effect [13–15], it is nevertheless interesting to
investigate jamming and the growth of jams in finite systems. In particular, if the crossover
to the asymptotic behaviour does not occur until the system sizes also reach O(1070), then
it is irrelevant for all conceivable earthbound systems (e.g., pedestrian traffic and biological
motors).

With these considerations in mind, we explore coarsening phenomena in the two-lane
system, as it evolves towards a jammed state. In a recent study of this model [16, 17], clusters
were found to grow much faster than in typical non-driven diffusive systems [1–3]. Here, we
report an in-depth investigation, using both simulation and analytic techniques. Focusing on
dynamic scaling of the clustering process, we investigate the average cluster size as a function
of time and system size. On the analytic side, we present a set of mean-field equations of
motion for the local particle densities. The numerical solutions of these equations resemble
the behaviour of the exact solution of the deterministic Burgers equation. From the Monte
Carlo simulations, in the small-γ regime, we find a growth exponent of 2/3 and good evidence
of dynamical scaling. Yet, as γ increases, we are forced to adjust the scaling exponents
in order to collapse the data onto a universal curve. We believe that these findings provide
further evidence for the destabilization of the ordered ‘phase’ with increasing γ or system
size.
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2. The model and its properties

The model is defined as a stochastic driven lattice gas with random sequential dynamics
that conserves the number of particles. There are two kinds of particles, ‘positive’ (+) and
‘negative’ (−) ones, that perform biased diffusion on an L × 2 lattice with periodic boundary
conditions in both directions. Each site on the lattice can be empty (�) or occupied by at
most one (positive or negative) particle. There are no other interactions between the particles
except an excluded volume interaction. The two species are driven in opposite directions by
an external field along the x-axis, where x = 1, . . . , L labels the position of a site ‘along the
road’. The particles can also change lanes (with y = 1, 2 being the lane label). One Monte
Carlo step (MCS) contains the following steps repeated 2L times:

• randomly pick a bond connecting two nearest-neighbour sites on the lattice;
• if the bond is in the x-direction and connects either a (+�) or a (�−) pair, exchange the

particle and the vacancy (a particle-hole exchange). If it is a particle pair (+ −), then
perform the exchange with probability γ —a process also referred to as charge-exchange,
or passing in the language of traffic models;

• if the bond is in the transverse direction (cross lane), then exchange particle–hole pairs
always and execute charge exchanges with probability γ .

Since no backward jumps are allowed, these dynamical rules can be interpreted as imposing
an infinite external ‘electric field’ on the ‘charged’ particles, which perform random walks
biased only along x. Apart from the random choosing of bonds, the only stochastic parameter
in the model is the particle-exchange probability γ . Our dynamics is invariant under spatial
translations and charge-parity (CP) transformations. We have studied only the case of a neutral
system, i.e. N+ = N−, where N+ and N− are the number of + and − particles, respectively.
Further, we focus mostly on systems at half filling, i.e., 0.5 = ρ̄ ≡ (N+ + N−)/(2L).

Unlike its equilibrium analogue, i.e., the Ising model, there is a qualitative difference
between the L× 2 (quasi 1D) and the L× 1 (strictly 1D) systems. For the latter case, both the
exact solution (for an infinite system) [8] and computer simulations (of finite systems) [18]
show that the steady state is disordered and homogeneous. Specifically, if we define a cluster
as a collection of particles connected by nearest-neighbour bonds, then the distribution of
cluster sizes is controlled by an exponential with a characteristic length of O(L0), remaining
finite except in the singular limits γ → 0 or ρ̄ → 1. By contrast, the presence of a second
lane has a profound effect on the steady state. For large regions in the γ –ρ̄ plane, the
cluster-size distribution has another peak located at sizes ∝ L, which is a clear signal of a
macroscopic jam [7, 15–17]. This behaviour is very counterintuitive: adding a second lane
should not lead to worse traffic jams! According to one’s naı̈ve expectation, the extra degree
of freedom associated with the additional lane should provide an efficient mechanism for
relieving blockages and allowing the system to reach a more homogeneous state. Instead,
computer simulations reveal properties more akin to the 2D system (L×L), where a compact,
macroscopic cluster is present in significant portions of the γ –ρ̄ phase diagram. Although the
macroscopic cluster in the L× 2 case is unlikely to persist in the L → ∞ limit [15], our focus
here is how the system evolves towards a phase-separated state in (physically reasonable) L’s
up to O(105).

Just like in the daily commute, for low γ and moderate ρ̄, a local blockage will remain
long enough for the next group of particles to jam into it. As a result, the blockage grows, as
long as the influx, due to the arrival of particles from outside the cluster, exceeds the outflux,
due to the loss of particles from non-zero γ . Figure 1 provides an example of this growth
process. It is a spacetime plot of a 512 × 2 lattice starting from a random initial configuration.



3498 I T Georgiev et al

Figure 1. Spacetime plot of a 512 × 2 lattice with particle density ρ̄ = 0.5 and charge-exchange
probability γ = 0.2. The initial configuration is random. For each x, a black dot represents
particles in both lanes, a white dot represents no particles and a grey dot represents one of the two
lanes being occupied.

The overall particle density is ρ̄ = 0.5 (i.e. ρ̄+ = ρ̄− = 0.25) and the charge-exchange
probability is γ = 0.2. Each row in the figure encodes the microscopic configuration on the
lattice. Time runs vertically downwards, covering the first 400 MCS. For these values of L, ρ̄

and γ , the system will coarsen until there is only one macroscopic cluster. The remainder of
this paper will be devoted to a more quantitative characterization of this coarsening process.
Before continuing, let us provide some necessary definitions.

First, we define a cluster of size s as any s particles connected by nearest-neighbour
bonds regardless of their charge (i.e., a ‘mass’ cluster). By collecting a histogram of cluster
sizes formed at time t, we can estimate the probability p̃(s, t) of having a cluster with a
mass s at time t. Since p̃ is not a conserved distribution, it is customary to study the
residence distribution, defined as p(s, t) ≡ sp̃(s, t). Representing the probability that a
randomly chosen particle belongs to a cluster of size s at time t, this distribution is easily
normalized, i.e.,

∑
s p(s, t) = 1. The steady-state residence distribution p∗(s) is given by

p∗(s) = limt→∞ p(s, t). In the one-lane system, it is monotonically decreasing and, in the
thermodynamic limit, known analytically: p∗(s) ∝ s−1/2 exp(−s/ξ) [8], where ξ(ρ̄, γ ) is
a characteristic mass independent of L. However, for the two-lane model, p∗ changes from
being monotonic for larger values of γ to being bi-modal for small γ (and moderate ρ̄, L).
An example is shown in figure 2, where ρ̄ = 0.5, L = 1024, and γ takes two values, 0.5 and
0.3. For the larger γ, p∗ is similar to the one-lane case. For the smaller value, p∗ has a second
peak at s = O(L), associated with the macroscopic cluster. Meanwhile, the peak at s = 0 can
be traced to the region outside this cluster, where a very low particle density allows only for
very small blockages (s � 5). We refer to the particles in this region as ‘travellers’ (see also
figure 1). Further details about the stationary states and the γ –ρ̄ phase diagram can be found
in [15].

3. Monte Carlo simulations

In a preliminary study of coarsening in this model [16, 17], systems up to L = 104 with
γ = 0.1 were simulated. The main observation is that the cluster sizes appear to grow roughly
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Figure 2. The residence distribution for two values of γ on a 1024 × 2 lattice, for ρ̄ = 0.5. For
γ = 0.3, we observe the ordered phase with a bi-modal distribution (a decay for small values of
s and a peak corresponding to the macroscopic cluster), while for γ = 0.5 we have a disordered
phase with uni-modal residence distribution.

as t2/3. Here, we report the results of a refined study using a fast multi-spin coding algorithm
where the storage of the microstates on the lattice and the updating rules are coded in a bit-wise
manner, as in, say, [19]. Since our model is a three-state model, we need at least two bits to
store the three possible states on a single lattice site. Instead of using two consecutive bits in
a machine word for encoding the state on a site, we prefer to use one bit from two different
words. In this way the algorithm for a single Monte Carlo step becomes somewhat simpler,
though working with two different arrays representing the two lanes reduces the efficiency
slightly. Each element of the two arrays represents a particular site on one of the lanes.
Exploiting the 64-bit architecture of our hardware, the individual bits in the machine word
encode the state on this site for 64 different lattices, all of which are updated simultaneously.
The increase in the efficiency of the multi-spin algorithm is roughly 35-fold over the standard
single spin flip algorithm. This allows us to study much larger systems and provides much
better statistics.

Figure 3 shows the behaviour of the residence distribution p(s, t) on a 2048 × 2 lattice
with γ = 0.1 and particle density ρ̄ = 0.5. In the regime from ∼102 to ∼105 MCS, seemingly
unbounded coarsening occurs. Thereafter, the largest cluster saturates the system size and
the system settles into a steady state. Two components of p(s, t) are easily distinguished,
corresponding to a relatively static mode near the origin associated with the travellers, and
a more ‘dynamic’ mode associated with the growing clusters. Since these modes exhibit
drastically different time dependences, the full distribution cannot be collapsed on a single
universal curve. We can, however, isolate the ‘growing’ component by introducing a coarse-
grained description of the growth process [16].

We define a strictly one-dimensional coarse-grained configuration on an L × 1 chain
as follows: (i) for a suitably chosen positive integer b, centre a b × 2 window at each site
x = 1, . . . , L with, say, y = 1 of the original lattice and count the number of particles inside
the window; (ii) if this particle number exceeds b, we occupy the associated site x on the
(coarse-grained) L × 1 lattice, otherwise, that site remains empty. Clearly, this procedure is
independent of y, i.e., which lane is selected. Since the small clusters in the traveller region
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Figure 3. The residence distribution p(s, t) versus the cluster mass s at different times
t = 102, 103, 104 and 3 × 105 MCS. The lattice size is L = 2048 with γ = 0.1 and ρ̄ = 0.5.

rarely exceed a mass of 5, we use windows of length b = 5. As a result, the traveller component
is removed from the coarse-grained configuration which contains only the information about
the growth mode. Since large clusters are almost unaffected by the coarse-graining procedure,
it should be obvious that the large-scale dynamics on the new L × 1 lattice has the same
characteristics as the original system. The coarse-graining procedure is performed each time
we take data, and the information about the lengths of clusters on the new lattice is collected.
The coarse-grained residence distribution, p(l, t), on the new lattice is defined as before,
namely, as the (normalized) probability that a randomly chosen particle belongs to a cluster
of length l at time t. The average cluster length lc(t) is defined as its first moment:

lc(t) ≡
L∑

l=1

lp(l, t). (1)

In the following, we show two large data sets for lc versus t obtained from 4096 independent
runs, on lattices with L = 2K, 8K, 16K and 32K , and ρ̄ = 0.5. One data set shows a
relatively small value of γ, γ = 0.1 (figures 4 and 5); the other shows the significantly larger
value γ = 0.3 (figures 6 and 7). All initial (t = 0) configurations are random.

To analyse the data, we test whether they satisfy dynamic scaling of the form:

lc(t) = LαF(t/Lz). (2)

This scaling form is chosen to reflect two features of our data. On the one hand, on any given
lattice, we expect a saturation of cluster sizes for large times, so that limt→∞ lc(t) should
become independent of time. In other words, the scaling function F(x) should approach
a constant as x → ∞. Any L-dependence of the steady-state cluster size is reflected in
the exponent α, via limt→∞ lc(t) ∝ Lα . On the other hand, we check whether the growth
regime follows a power law corresponding to lc(t) ∝ tα/z and a finite limit of x−α/zF (x) for
x � 1. For γ = 0.1, the data collapse is very good at large t, using the exponent values α =
1.00 ± 0.01 and z = 1.50 ± 0.01. This gives us a cluster growth exponent β ≡ α/z =
0.66 ± 0.02 consistent with a value of 2/3. It is not surprising, of course, that the scaling
form of equation (2) does not hold for early times. Starting from random configurations,
particles immediately follow their preferred direction, rapidly generating many small clusters
separated by completely empty regions. The associated lc(t) is nearly constant for some
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Figure 5. The effective growth exponent βeff for γ = 0.1 and lattice sizes L = 2048, 8192
and 32 768.

time and independent of system size, so that the corrections to equation (2) decrease with L.
The average cluster size only starts to increase noticeably when particles begin to escape from
these small clusters, initiating the growth regime.

To put the spotlight squarely on the growth regime, we show the local exponent,
βeff ≡ d ln(lc(t))/d(ln t) in figure 5, for a range of system sizes. This representation is
of course much more sensitive to small changes in the power law, lc(t) ∝ tβeff , than figure 4.
The data show that βeff is monotonically increasing with t and independent of L until the
saturation regime sets in. The onset of saturation is marked by a sharp spike in βeff , followed
by a similarly sharp drop. Just before saturation, βeff approaches the limiting value 2/3. The
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versus t, where the lattice sizes are L = 2048, 8192, 16384 and 32 768 from top to bottom.
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Figure 7. The effective growth exponent βeff for γ = 0.1 and lattice sizes L = 2048, 8192
and 32 768.

apparent t-dependence of βeff simply reflects the behaviour of the scaling function F(t/Lz).
The behaviour of our system after saturation, reflected in the exponent value α = 1.0 shows
that the largest clusters are indeed macroscopic, in that their size scales linearly with L.

The results for the case of γ = 0.3 are shown in figures 6 and 7. By increasing γ , we
effectively destabilize the macroscopic clusters in the stationary regime. Here, the best data
collapse is obtained with α = 0.93 ± 0.01 and z = 1.45 ± 0.01, which results in a growth
exponent β = 0.64 ± 0.02. The smaller value of β is also clearly reflected in the plot of the
local slope, figure 7. The need to adjust the scaling exponents as functions of γ may well
point towards significant changes in the steady-state properties of the model. For sufficiently
large L and γ , a crossover to an exponential (rather than bi-modal) residence distribution
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Figure 8. The effective growth exponent βeff for γ = 0.1, 0.3 and 0.37 for lattice size L = 32 768.

occurs [15]. For our parameters (ρ̄ = 0.5, γ = 0.3, L � 32k), the stationary distribution is
still bi-modal but the peak at large s is already very broad. While the data collapse for the
coarsening system is still very good, a value of α < 1 shows that the largest clusters already
scale sublinearly with L. It is conceivable that equation (2) acquires additional corrections
which account for the crossover, leading to effectively γ -dependent exponents. For γ = 0.37
(figure 8), it becomes blatantly obvious that βeff remains well below 0.6 and that there are
strong L-dependent corrections.

To summarize, for small values of γ (i.e. γ � 0.1), the system coarsens with a growth
exponent β consistent with 2/3 and approaches a steady state characterized by a single
macroscopic cluster with lc ∝ L. As γ increases, the data collapse remains good but only if
the exponents are adjusted with γ . In particular, the growth exponent β must be reduced quite
significantly. It is natural to conclude that this is a by-product of the crossover from bi-modal
to exponential p∗(s).

4. A mean-field approximation

Noise plays a significant role in our Monte Carlo simulations. First, all initial conditions
are random; second, and more importantly, the dynamics itself is inherently stochastic. Even
starting from the same initial condition, each Monte Carlo run follows a distinct trajectory. It is
natural to ask whether the statistical averaging over these different trajectories is essential for
the coarsening process. To put this question into context, we recall that thermal fluctuations
play no role for the temporal evolution of equilibrium systems towards their final ordered states,
provided the domain size is much larger than the thermal correlation length [3]. As a result,
domain growth laws can be obtained by integrating a deterministic mean-field equation, e.g.,
the Cahn–Hilliard equation for the ordering dynamics of a scalar conserved order parameter
(model B, in the Hohenberg–Halperin classification [20]).

In this section, we neglect fluctuations in an attempt to test their relevance. We establish
evolution equations for the two particle densities which form the analogue of the Cahn–Hilliard
equation for our dynamics and integrate them numerically. The only source of noise will be
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under the initial condition; once it is set, the evolution proceeds completely deterministically.
If we recover a growth exponent of 2/3, we may conclude that the stochasticity of the Monte
Carlo simulations is irrelevant. In contrast, if a different growth exponent emerges here,
we are faced with a stark difference between coarsening towards an equilibrium versus a
non-equilibrium steady state, namely, that fluctuations are essential to describe coarsening
phenomena in the latter.

To obtain a set of evolution equations, we begin from the microscopic master equation
and derive equations for the local averages, 〈ρ+(x, y, t)〉 and 〈ρ−(x, y, t)〉, of positive and
negative particles at lattice site x, y and time t. Alternatively, we can write down simple
balance equations for the loss and/or gain of particles at a given lattice site. Since the
numerical integration will require a discrete spatial variable, we simply work with the original
lattice rather than taking a naı̈ve continuum limit. We assume spatial homogeneity in the
y-direction, letting the densities depend on x only, 〈ρ+(x, y, t)〉 → 〈ρ+(x, t)〉. In a mean-field
approximation, all higher point averages are replaced by products of one-point averages, e.g.,
〈ρ+(x + 1, t)ρ−(x, t)〉 � 〈ρ+(x + 1, t)〉〈ρ−(x, t)〉. Finally, for simplicity, we omit the 〈·〉
brackets and introduce the local hole density

φ(x, t) ≡ 1 − ρ+(x, t) − ρ−(x, t).

The resulting equations, in one spatial dimension, are given by [21]:

∂tρ
+(x, t) = ρ+(x − 1, t)φ(x, t) − ρ+(x, t)φ(x + 1, t)

+ γ [ρ+(x − 1, t)ρ−(x, t) − ρ+(x, t)ρ−(x + 1, t)]

∂tρ
−(x, t) = ρ−(x + 1, t)φ(x, t) − ρ−(x, t)φ(x − 1, t)

+ γ [ρ−(x + 1, t)ρ+(x, t) − ρ−(x, t)ρ+(x − 1, t)]. (3)

Each of the terms on the right-hand side is easily understood; for example, the contribution
ρ+(x − 1, t)φ(x, t) reflects the jumps of positive particles at site x − 1 to site x, provided x is
empty. The equations for ρ+(x, t) and ρ−(x, t) are, of course, related by a charge-parity (CP)
symmetry. The two equations take the form of continuity equations, i.e.,

∂tρ
±(x, t) = j±(x − 1, t) − j±(x, t), (4)

where j+(x, t) ≡ ρ+(x, t)[φ(x + 1, t)+γρ−(x + 1, t)] and j−(x, t) ≡ −ρ−(x + 1, t)[φ(x, t)+
γρ+(x, t)] denote the net currents of positive and negative particles from site x to site x + 1,
respectively.

Before we turn to the numerical integration of these equations, we first summarize the
key properties of their stationary solutions, ρ+(x, t) → ρ+(x) and ρ−(x, t) → ρ−(x). This
will help us interpret the density profiles at late times. Since equations (3) take the form
of continuity equations, they are clearly satisfied by spatially uniform densities, reflecting
homogeneous steady states. In the continuum limit, spatially inhomogeneous stationary
solutions, reflecting jammed states, can also be found [21]. These consist of a domain of
travellers (characterized by uniform densities) and a single large cluster, containing essentially
no holes (i.e., φ � 0 inside), linked by a narrow region in which the densities vary rapidly,
reminiscent of shocks. Remarkably, it is straightforward to find approximate solutions to
equations (3) which consist of separate uniform and cluster domains patched together by a
consistency condition. Stationarity implies j±(x, t) ≡ j± = const independent of t and x.
The CP symmetry also leads to j+ = −j− ≡ j . In the traveller domain, all densities are
uniform whence j = ρ+[φ + γρ−]. Invoking symmetry again, we expect ρ+ = ρ− ≡ ρ and
φ = 1 − 2ρ so that we can find the current–density relation in the traveller domain:

j = ρ[1 − 2ρ + γρ]. (5)
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Next, we centre the x-axis in the middle of the cluster and simplify equation (3) by setting
φ(x) = 0, i.e., 1 = ρ+(x) + ρ−(x). By continuity, the currents inside the cluster must equal
the exterior currents whence

j = γρ+(x)ρ−(x + 1) = γρ+(x)[1 − ρ+(x + 1)]. (6)

This is a recursion relation for ρ+(x), solved by

ρ+(x) = 1
2 [1 − A tan µx] (7)

with the amplitude and slope of the tan-function given in terms of the excess current,
jex ≡ j − γ /4 > 0, via

A = tan µ =
√

jex.

Clearly, the corresponding negative charge density is given by ρ−(x) = 1 − ρ+(x). To match
the solutions inside and outside the clusters, we note that the positive particles form a sharp
shock front at the left edge of the cluster while behaving quite smoothly at the right edge [22].
Assuming the cluster ranges from x = −l/2 to x = +l/2, we match the interior density to the
exterior one by equating them at the right edge:

ρ = ρ+(l/2).

To close the set of equations, one must add the overall mass constraint, 2ρ̄L = l + 2ρ(L − l)

to these relations.
The two key results from this section are (i) the tan-shape of the density profiles inside a

stationary cluster and (ii) the excess current jex through a cluster of length l. Instead of the
lengthy full expression, we only give its form for large l, namely, jex � π2γ /l2.

To solve the mean-field equations numerically, we use a simple Euler integration scheme,
which is stable for our set of equations. The maximum number of space discretization points
that we have used is 105 and the time propagation is achieved by using a step δt = 0.4. The
initial values for the densities are digitized, i.e. they take only the values 0.0 and 1.0 at the
different space locations according to the chosen particle density. As in the Monte Carlo
simulations, we restrict ourselves to a particle density of 0.5 and choose γ = 0.1. To define a
cluster, we set a threshold value φth = 0.3 for the density of the holes, i.e. the point x where
φ(x) crosses φth from above (below) marks the beginning (end) of a cluster. To compute the
average cluster size l̄c(t), we average over 4000 independent random initial configurations,
using the same method as in the Monte Carlo simulations.

Following the evolution of a typical initial condition, we can distinguish several stages.
Within the first few time steps, the sharp distinction between initially filled (φ(x, 0) = 0)

and initially empty (φ(x, 0) = 1) regions blurs. Domains of positive density (ρ+(x, 0) = 1)
leak rapidly to higher x-values until they encounter domains of negative density. At t ∼ 100,
larger domains of high mass density have formed, typically covering 15–20 discretization
points. Even though the mass density in these clusters is not always fully saturated, almost
all of these regions are included in the cluster count, due to the fairly high threshold value,
φth = 0.3. Considering the two particle densities, we observe that the left (right) edges of
clusters are marked by sharp peaks in ρ+ (ρ−). Highly saturated domains are characterized
by two peaks which are almost perfect mirror images of one another. The traveller regions are
still quite inhomogeneous and evolve rapidly. At later times (e.g., t ∼ 1000), these traveller
regions have become much more uniform and essentially all clusters have a mass density near
unity. Moreover, it appears that the density profiles inside the clusters develop a tan-shape
reminiscent of the stationary solution, equation (7). In other words, the late-time profiles can
be described as being patched together from alternating traveller and cluster domains, each



3506 I T Georgiev et al

10
0

10
2

10
4

10
6

t

10

100

1000

10000

l
c

10
-6

10
-4

10
-2

1/t

0.2

0.3

0.4

0.5

0.6

β
eff

Figure 9. The average cluster size l̄c(t) and the effective growth exponent βeff for γ = 0.1 from
mean-field numerical simulations.

of which seems nearly ‘equilibrated’ within itself but not yet in ‘equilibrium’ with the others.
We will return to these observations below.

Our results for the average cluster size, l̄c(t), and for the local growth exponent
β̄eff ≡ d ln(l̄c(t))/d(ln t) are shown in figure 9. At early times (t ∼ 100), the local growth
exponent develops a pronounced peak which can be traced to the rapid formation of partially
unsaturated clusters. Not surprisingly, the detailed behaviour of β̄eff in this regime is very
sensitive to the chosen threshold φth. A lower φth will reduce the size of this peak. For later
times, the mean-field β̄eff behaves very similarly to its Monte Carlo counterpart. It slowly
approaches a limiting value 0.63 ± 0.01 before the system reaches steady state. As in the MC
simulations, the limiting value ‘creeps up’ as the number of space discretization points (the
system size) increases, so that the mean-field results appear to be are consistent with a growth
exponent of 2/3.

Let us conclude this section by discussing a few simple analytic attempts towards
computing the growth exponent. None of them generate a satisfactory estimate of the growth
exponent, whence we conclude that its origin may be quite subtle. Taking our clues from the
Monte Carlo simulations, we note that particles spend only a negligible amount of time in
transit between clusters. Moreover, the density of travellers remains approximately constant in
time. It seems, therefore, reasonable to focus on the sizes (lengths) of the clusters only. These
evolve as neighbouring clusters exchange particles. Starting from the strictly one-dimensional
coarse-grained configurations described in section 3, the simplest representation of a sequence
(i = 1, 2, . . .) of clusters is to specify their lengths, li , and the net positive and negative particle
currents, j±(li), which flow through them. Assuming that cluster i gains positive (negative)
particles from its left (right) neighbour and loses them to its right (left) neighbour, we may
write

l̇i = j+(li−1) + j−(li+1) − [j+(li) + j−(li)].

Clearly, an overall constant cancels on the right-hand side, so that only the l-dependent excess
currents contribute. If we assume that the cluster interiors are nearly ‘equilibrated’ in the
latest stages of the growth process and invoke the mean-field result j+

ex(li) � j−
ex(li) ∝ 1

/
l2
i ,
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simple scaling gives us l̇ ∝ 1/l2 or l ∼ t1/3. This clearly produces a poor estimate (1/3) for
the growth exponent. A somewhat better—but still unsatisfactory—estimate can be obtained
if we replace the mean-field expression for the currents by its exact counterpart. To do so,
we recall that the cluster interiors are almost entirely free of holes so that the dynamics
inside the clusters is dominated by +/− exchanges, following a totally asymmetric simple
exclusion process (TASEP) [23]. The associated excess currents are exactly known as:
j+(li) = j−(li) ∝ 1/li . Simple scaling now yields l ∼ t1/2 which is faster than the mean-field
estimate but still slower than the observed t2/3 behaviour. We note briefly that the same
exponent (β = 1/2) results from a representation of the cluster growth process in terms
of coalescing but otherwise noninteracting random walkers [16, 24]. We believe that the
deficiencies of these approaches can be traced, by monitoring the evolution of our clusters,
to the rapid and systematic disintegration of small ones. While this bias towards larger
clusters can be modelled in an ad hoc (but quantitatively very accurate) fashion by introducing
appropriate interactions between the walkers [16], we have as yet no reliable insight into the
physical origin of these interactions.

Finally, let us offer an intuitive picture which may provide some hints towards a growth
exponent of 2/3. First, the strongest evidence for this value results from simulations with
small γ . This suggests a time scale separation between the dynamics of the traveller domains,
dominated by fast particle–hole exchanges, and the cluster regions, controlled by charge
exchanges on a much slower time scale set by γ −1. This is clearly reflected in the mean-
field currents, equations (5) and (6). In other words, particles spend only very brief periods
travelling from one cluster to the next, compared to the time required to traverse a large cluster
from one end to the other. Moreover, the microscopic dynamics within the interior of clusters
is a simple TASEP which can be described, under very well-defined conditions [25], by the
deterministic Burgers equation [26]. It is therefore tempting to neglect the traveller regions
and to think of the sequence of clusters in terms of coarsening Burgers shocks. In this context,
it is well known [26] that the average distance of shocks grows as t2/3, provided an average
over random initial conditions is taken. Of course, this reasoning remains a conjecture until a
more rigorous analytic formulation can be found.

5. Conclusions

To summarize, we have analysed a coarsening phenomenon in a two-species driven diffusive
system on an L× 2 periodic lattice. Positive (negative) particles hop in the positive (negative)
x-direction with rate 1, provided the destination site is empty. If it is filled by a particle of
opposite charge, the exchange occurs with rate γ < 1. Cross-lane exchanges are unbiased.
Since γ < 1, two opposing particles impede each other, resulting in a temporary local
blockage. For sufficiently small γ , or sufficiently high overall particle density, these local
jams aggregate (‘coarsen’) into a macroscopic cluster which characterizes the final steady state
of finite systems. A simple interpretation of this dynamics is traffic of fast and slow cars on a
two-lane ring road, viewed from a co-moving frame.

Using Monte Carlo simulations and the numerical integration of a set of mean-
field equations, we study how an initially random distribution of particles evolves to this
inhomogeneous steady state, i.e., we quantify the coarsening process in which local blockages
form larger and larger clusters. Measuring the average cluster size, lc(t), as a function of time,
both methods indicate power law growth lc(t) ∼ tβ with a growth exponent β � 2/3 for the
late stages of growth. In fact, Monte Carlo simulations show excellent data collapse for small
γ and a range of system sizes if lc(t)/L is plotted versus t/L3/2. However, as γ increases,
the scaling exponents have to be adjusted to achieve a comparable quality of data collapse.
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We interpret this as further evidence for the observation that the inhomogeneous stationary
state will not survive in the thermodynamic limit [13–15].

Since the stationary properties of the L × 1 system can be rigorously mapped [13, 14]
into an exactly solvable one-dimensional zero-range process (ZRP) [27] involving one species
of particles, it is natural to compare our findings to recent results for the coarsening dynamics
of such models [28]. They are defined on a chain of sites, each of which can be occupied
by an integer number, k = 0, 1, 2, . . . of particles. The hopping rate w(k) of a given particle
depends only on the number, k, of particles located at the originating site. Under well-defined
conditions on the w(k), the density in the bulk is limited to a critical value, and excess particles
accumulate (‘condense’) at a non-extensive fraction of sites [27]. Cluster sites are then defined
as those sites where a macroscopic fraction of particles has accumulated [28]. As the system
approaches the final stationary state, one monitors how the average number of particles at
these cluster sites grows with time. Two basic universality classes can be distinguished: if
the w(k) are symmetric, i.e., particles hop to the right and left with equal rates, the dynamic
exponent is found to be z = 3 resulting in a growth exponent β = 1/3. In contrast, if the
particle hopping is biased, the growth occurs faster, with z = 2 and β = 1/2. Clearly, both
of these are incompatible with our results. We note that growth exponents of β = 2/3 can be
‘engineered’ in one-dimensional ZRPs involving two species of particles [29], but only for very
special rates which break a fundamental symmetry of our dynamics, mainly, CP invariance.
Hence, we believe that there is little to learn from these results for our case. Clearly, the fast
coarsening observed here, compared to growth exponents of 1/3 or 1/2 indicates that some
essential characteristics of our dynamics cannot be captured in the simple ZRP picture. At
this point, we can only speculate what these features might be.
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